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A New Criterion for Linear 2-Port Stability Using a
Single Geometrically Derived Parameter

Marion Lee Edwards, Senior Member, IEEE and Jeffrey H. Sinsky, Member, IEEE

Abstract—A new stability parameter ““n(S),”’ is defined for
linear 2-port circuits using a geometrical approach. It is shown
that 4 > 1 alone is necessary and sufficient for a circuit to be
unconditionally stable, where

y = 1 - |84

1S — STHA| + |8y Stz
This single parameter can replace the dual Rollet (K > 1) and
auxiliary conditions for determining unconditional stability.

The parameters K and p are compared by discussing their im-
plications in terms of mapping circles.

I. INTRODUCTION

LINEAR 2-port circuit is said to be absolutely, or

unconditionally, stable if there is no passive source
(IT's] < 1) and passive load (|T';] < 1) combination that
can cause the circuit to oscillate. It is known [1]-[6] that
the combination of the Rollet [7] condition

1= [8ul” — ISul* + [A]°
ZISIZSZII

together with any one of the following auxiliary condi-
tions is necessary and sufficient for unconditional stabil-

ity.

K= > 1 1

B =1+ [Sy]* = |Su]* — AP >0 (2a)
B, =1~ |Syl* + [Sul* = |a> >0 (2b)
|A] = |8118n — S8yl < 1 (2¢)
L= [Sul* > |S8] (2d)
1= [Su* > S8y Qe)

Various authors have claimed that conditions (2d) and
(2e) are both required [8]-[11] while others have stated
that only one of the conditions is required [3]. Appendix
I shows explicitly that when K > 1, then auxiliary con-
dition (2d) implies (2¢) and vice versa, i.e., only one aux-
iliary condition is needed.

The design of active circuits requires that multiple pa-
rameters be evaluated over a wide frequency range much
larger than their intended pass-band. If a circuit or a de-
vice fails to meet these conditions, it is difficult to assess
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the degree of potential instability that exists, since the
values associated with (1) and (2) provide little direct
physical insight into the degree of stability or lack thereof,

Mappings

The input and output reflection coeflicient are related
to the load and source reflection coefficient by the well
known linear fractional transformation which maps cir-
cles into circles (where a straight line is the special case
of a circle containing the point o) [12]

S8 I
in f( L) Sll + 1 — S22FL’ (32‘1)
and
S5 Ty \
= gy = 5, + 2225
Lo = 8T'y) 2t T8 T, (3b)

The inverses, I', = f ('), and I's = g ~'(I',,), are
well defined provided that S;,.S,; # 0

o Sy —~ T
Lo=f'Cw=3"57 (3¢)
- Sy — I10u
Ty =g 'To) = e 2 ST tt. Gd)
oul

Consequently, the approach in this paper is to initially
assume that the circuit is not unilateral (S;,S,; # 0) and
then to examine the unilateral case afterwards.

The function f and its inverse f ' are mappings be-
tween complex points in the I',, plane and the I'; plane.
Fig. 1 illustrates the domains and ranges of these maps
that are necessary and sufficient for urnconditional stabil-
ity. A circuit is unconditionally stable if the function *‘f”’
maps the unit disk in the I';-plane into the unit disk in the
T',,-plane. This is equivalent to saying that the inverse f ~'
maps the unit disk in the [';-plane onto a region which
contains the unit disk in the I';-plane. Note that the unit
disk is a set of complex reflection coeflicient whose mag-
nitude is less than or equal to one. This is exactly the
region represented by the conventional or passive Smith
Chart denoted in this paper as USC standing for Unit Smith
Chart. Because of the circle preserving property of linear
fractional transformations, the inverse mapping could
typically look either like Fig. 1(b) or (c). These functional
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Fig. 1. Unconditional stability in terms of mapped regions.

characteristics and their analytical representation form the
basis for defining the new measure of stability.

Traditional stability circles are defined [9] in terms of
the mappings f and g as follows:

Source Stability Circle = g (|l = 1)
Load Stability Circle = f (T, = 1)

The radius and center of these circles results in the
commonly known expressions:

o — 1821 Sia
Slsul? — 14
C. — ST — SpA*
S — B
[Sul’ = a7
Cs = ‘lCS|
N |S21 812
= o
[1S2]* = 1A%
S% — Sy A
C, =22 oo
F Sl - AP
o = |G 4

Another set of circles, referred to as input and output
mapping circles can be defined in the T';, plane and T,
plane as follows: ’

Il

Input Unit Mapping Circle = f(|T';| = 1)

g(lrsl

Output Unit Mapping Circle = 1)

Unit disk
(USC)
©
The radius and center of these circles are
- 151815
"L - ISyl
Sy — SHA
C, = 11 222
1 - 1522| v
Cin = ‘Cin[
- 1521 81|
N VI R
S» — Stha
Cong = 2—H2
S N A
Cout = lCoutI- (3

The mappings illustrated in Fig. 1(b) and (c) appear to
be different. However, a stereographic representation of
the complex plane onto a unit sphere [13] reveals that they
are inherently the same, and hence a single parameter
should exist (sec Appendix II). A new parameter. “‘u,”’

~ will be defined based upon the mapping “‘f.”” It will be

shown that the value of p alone, unambiguously deter-
mines if the circuit is unconditionally stable or potentially
(conditionally) unstable. A dual parameter designated '
can be defined based upon the mapping ‘‘g,”” and also
uniquely determines whether the circuit is unconditionally
stable. This approach also provides direct physical insight
into the degree to which the Unit Smith Chart (USC), is
encroached by possible unstable load and source regions,
providing the engineer with a measure of the risk or mar-
gin associated with his design.
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Complex Representation of a Disk (or Disk
Complement)

The following inequality

[z — za — z*a* < b (6)

where a is a complex number and b is a real number such
that |a|*> + b = 0, describes a circular disk of complex
points whose center is C = g*, and whose radius is

r=+b + |a|’.

This is seen by adding the term |a|” to both sides of (6)
and manipulating the results to get

|z — a*| < Vb + |a|*.

If the ‘‘less than’’ sign in (6) were reversed to be a
‘‘greater than’’ sign then

lz — a*| > Vb + |a|*

which describes a region external to the above defined
disk. This external region is referred to, therefore, as a
‘“disk complement.”’

II. DEFINING THE NEW STABILITY FACTOR gt

The new parameter, u, is defined as the minimum dis-
tance in the I';-plane between the origin of the Unit Smith
Chart and the unstable region. A negative value for this
distance parameter indicates that the unstable region over-
laps the origin of USC. It turns out that u is described by
a relatively simple expression whose analytical form is
the same regardless of whether the inverse mapping, f ~',
is of the type illustrated by Fig. 1(b), or (c).

It will now be shown that the mapping “‘f ~',”" illus-
trated in Fig. 1(b) and (c), will occur if and only if the
distance p(S) > 1. This will be argued by showing that
these mappings imply that u(S) > 1 and then justifying
the reversibility of the steps. The above statement is
equivalent to the following mathematical statement

[USC C {Fp: Ty = f(ITWl < D} & w(S) > L.
7

The rarige of the map f ~!(|T',| < 1), is determined by
| f(Tp)| < 1. Straight forward substitution from (3a)
yields

IFL[2[|SZZ|2 — |A]"] + TF[SnA* — §%]
+ TLISHA = Spl > ISul° - L.

Dividing this expression by |S,|> — |A|*, one obtains
the complex variable representation of a disk or disk com-
plement (see (6)) depending on whether or not |Sy|> —
|A]% > 0or [Sy]” — |A]* < 0. The resulting inequalities
are as follows:

_SH — Sy Ax
1Sn|* — 1A]°

821 12
2/ = 14]

L ®
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where |S,|* — |A|* > 0, and

_ 8% — SuA*
|S)” = 4]

where |Sy,|* — |A]* < 0. ‘

The circle defined by replacing the inequalities in (8)
and (9) with an equal sign is commonly referred to as a
stability circle. This analysis can be carried further since

1521 82
|A]* = S,

I, ®

'(8) and (9) preserve the information about which region

is the stable one.

One can consider what is required for the USC to be
contained in the range of the mapping f ' as illustrated
in Fig. 1(b) and (c).

Case I: |Sp)* = |A]> > 0

In this case the range of our mapping in the I'; plane is
the region outside the circle defined by (8) and must be
of the type illustrated in Fig. 1(b). It is clear that the USC
is contained in the disk complement if and only if

c—r>1 (10)
where

¢ = the distance from the center of the Smith Chart to
the center of the disk complement
r = the radius of the disk complement

Substituting the values for ¢ and r from (8) into (10),

18 Sl
[S* — 14|

8% — Sy A*
15217 = A}

5> 1.

Since the denominator of the expressions, |Sy|* — |A]?
is positive, one can simplify to

1S — SHA| = |8y 8l

3 > 1 (1n
1S2* — {A]
Case 2: |S»|> = |A? < 0
In this case the range of the mapping “‘f """’ is the re-

gion inside the disk defined by (9) and must be of the type
illustrated in Fig. 1(c). It is clear that USC is contained
in this disk if and only if

r—rc>1 (12)
Substituting the values for ¢ and r from (9) into (12),

S3Hh — S A%
151> ~ |42

S0 8l _

> 1.
A =[S

In this case the denominator, |Sy,|> ~ |A|?, is negative,
and removal of the absolute value sign requires a re-
arrangement, yielding

[S21 81|
NEEYE

_ |S§k2 - SllA*l
A]* = 185

> 1.

By reordering the terms in the denominator, one arrives
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at the following result:

|822 - STIA[ B ISZISIZI
Sl — AP

It is important to note that (13) is identical to (11), and
thus a single stability parameter emerges regardless of the
value of |S,,|* — |A[.

The apparent singularity presented by the denominator
of (13) can be eliminated and the expression further sim-
plified by noting that

> 1. (13)

S;klA‘z - lS21 SIZ|2
1 - |Sll |2
Factoring the numerator of (14) which is the difference of

two squares, and substituting |S,,|* — |A|? from (14) into
(13) yields,

|S22 -

S |* = |A]? = (14)

- 1 - ISHIZ
1S3 — STHA| + |82 8]

It is interesting to note that the case where |S5,|* — |A[*
= 0 results in a stability circle which is a straight line but
presents no difficulty with (15).

All steps taken above have been completely reversible,
$0 it has been shown that the mapping *f ~',”’ illustrated
in Fig. 1(b) and (c), will occur if and only if u(S) > 1.

Also note from (5) that the magnitude, | x|, is related
to the output mapping circles by

> 1.

[ (15)

(16)

m = Four T Cout-

III. PROOF THAT p > 1 4 UNCONDITIONAL
STABILITY

In order to prove that . > 1 if and only if unconditional
stability exists, it must first be shown that the mapping
“f* illustrated in Fig. 1(a) implies that

K>1 (17a)

and
1 = |Sul” > |52 Sl (17b)
The range of the mapping f(|T';| < 1), is determined
by | f~'(Tw)| < 1. Solving for T',,, one obtains the fol-
lowing,

Tul’US2l* = 11 + TS — SnA*]
+ TRlSu — SHAl > [Sul* — A a8

It is now desirable to divide both sides of (18) by | Sy |
— 1. If |$»]*> — 1 > 0, the range of the mapping *‘f "’
would be a disk complement and contradictory to the as-
sumption that the mapping is that illustrated in Fig. 1(a).

Therefore, |S»|*> — 1 < 0. Dividing and using (6), one
obtains
T, — S — SikzzA 821 12 _ (19)
1 — [$y] [T — [8»]7
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By noting that this mapping results in a disk that lies
inside the USC in the T',; plane (see Fig. 1(a)), we see
that ¢ + r < 1. Moving r to the right hand side yields

|S11 - S§2A|
1~ [S5]?

1521 1o

- . 20
1= [8p]° 20)

Since the left side of (20) is greater than or equal to
zero, then

1821812 < 1 = |Sp|% 2h
Furthermore, squaring both sides of (20) and substitut-
ing

|Sll - Sik2A|2

= |8y 8l” + [1 = [Su)10Sul> — 171 (22)
into the result yields
_ 2 2 2
K= 1 1S2] [S1 " + |A] > 1. 23)

2|SZISIZI

All of the steps taken from (18) to (23) are completely
reversible, so it has been shown that the mapping “‘f”’
illustrated in Fig. 1(a) implies that

K>1
1 - |Szz]2 > |S21512|-

This is exactly the two conditions of (1) and (2e) which
are known to be necessary and sufficient for unconditional
stability of a linear 2-port. Thus it has been shown that
u > 1if and only if a 2-port network is unconditionally
stable.

We now look at the unilateral case of p. It is clear by
substitution that

1 - |S11 |2
|Spal 11— [841/?]
so it is immediately obvious that y > 1 if and only if | Sy,
< land |S};| < 1, which are the necessary and sufficient

conditions for unconditional stability of a unilateral cir-
cuit.

p(unilateral) = 20

IV. DEFINITION OF THE DUAL PARAMETER u'

Another parameter, u’, can be defined based on the
mapping function “‘g’’ in (3) and likewise u’ > 1 if and
only if a 2-port network is unconditionally stable. The
dual parameter is given by

o 1 — |8y?
S0 = SHA| + 18, 8]
This further implies that u(S) > 1 ¢ u'(S) > 1. Also,
1
|

© > 1. (25)

£l + Cin (26)
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V. GEOMETRIC IMPLICATIONS OF K > 1
VERsuUs g > 1

The criterion u > 1 has been shown to be necessary
and sufficient for unconditional stability. It is well known
that K > 1 is only a necessary condition. A better under-
standing of these criteria can be seen by examining their
geometric implications in terms of mapping circles.

The following proof will show that K > 1 is geometri-
cally equivalent to stating that the input and output map-
ping circles and the source and load stability circles do
not intersect the boundary of the USC. Although Meys
[5] has proven this using a Y-parameter formulation, the
following S-parameter approach is useful in seeing the
geometrical relationship between K.and . K > 1 implies

1 — |8ul> > [Su]> = |AP + 218, 8u].  @7)

- Since the left hand side of the inequality is the denom-
inator term in the input mapping circle expressions (35), it
is desirable to divide the inequality (27) by 1 — |S,|%
However, division requires a knowledge of the sign of
this term. Since this unknown, one must consider both
cases, i.e., when the quantity is positive and when it is
negative. ‘ ‘
Case A: 1 — |Sp|* >0

In this case division results in
S1]* — |A]* + 2|8y S|

1= |8y]*

Multiplying the numerator and denominator of the right
hand side by 1 — |S,,|? and substituting the identity

A = 1SuDSul? = A1) = |S; = SHA]? = |Sy S

resultsvin
1S5 S| >2
1 - /22 S
< 1 — |l

i>

1S — SHA|?

—_— . 28
TR R

Applying a square root operatioh to the inequality (28).

requires that consideration be given to the fact that the
left hand side could be positive or negative. Each of these
possibilities is handled separately.

Case A[: 1 — ‘ISZZIZ > 'SZIS‘12|
In this case (28) becomes
[S1, — SHA|
- |S22|2

From (5) this means that the radius and center of the input
mapping circles satisfy

821 512
L= [8y[*

< 1.

Cin + gy < 1

This is the case of unconditional stability and is illustrated
in Fig. 2(a).

Case Ay: 1 — [Sy|* < |82 81]

2
1-18y5 12> 18, Syl
r+c< 1.

(@
r.,Plane

0<1-18,, 12 < 1S,, 8,41
r—c>1

®

2
1-18,,1F<0
c—r>1

©
Figfil Hlustration of possible mapping circles for K > 1.

In this case, simple algebraic manipulation results in

S5 Si2l Sy — $54]

> L
I - |S22I2 I - |Szzl2

From (5),

) Fin = Cin > I i
resulting in the case illustrated by Fig. 2(b). Clearly, the
input mapping circle does not intersect the boundary of

the USC, and the circuit is potentially unstable since the
mapped region contains values of I';, whose magnitude

- exceeds unity. :
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Case B: 1 — |85,]* < 0.

In this case division of (27) and manipulations similar
to those of Case A results in
1S — SHal?

121 S| >2
1+ < . .
< (‘Szz|' - 1)

'Szzlz -1
The square root operation can be unambiguously per-
formed in this case since the quantities inside the brackets
are known to be positive. After performing the square root
operation, a rearrangement of terms yields

IS1 — $34] _ |S21 Sz > 1
(522'2 -1 lszzlz -1
Cn — Tip > 1

Again the input mapping circles does not intersect the
boundary of the USC (see Fig. 2(c)), and also, the circuit
is potentially unstable.

Interchanging the subscripts, (2 — 1, and 1 — 2) in the
previous argument and replacing r;, and c¢;, with 7, and
Cout> Teveals that the output mapping circle also does not
intersect the USC, and the same three identical scenarios
illustrated in Fig. 2 will occur in the T'y; plane as well.
Since the function *‘f’’ and ‘‘g’’ are one to one map-
pings, the output and input mapping circles intersect the
boundary of the USC if and only if the source and load
stability circles intersect the boundary of the USC. There-
fore, K > 1 is equivalent to the nonintersection of stabil-
ity circles with the boundary of the USC.

The condition X > 1 implies that one of three possible
mapping of the USC into the Ty, or T, plane can occur.
The parameter K can be compared to the new stability
parameter p by discussing the implications of u > 1 geo-
metrically in terms of mapping circles. From (16), if
] > 1, then roy + ¢ < 1, and the output mapping
circle lies inside the USC. This circle is the image of the
USC boundary from the I's plane. However, | u| does not
provide enough information to determine whether the USC
in the I'g plane is transformed to the interior of the map-
ping circle (a disk) or the external region of the mapping
circle (a disk complement). The sign of u resolves this
ambiguity. If u is positive, the mapped region is disk and
the circuit is unconditionally stable, otherwise the mapped
region is a disk complement permitting reflection coeffi-
cients of unlimited magnitude (i.e., conditionally unsta-
ble).

This can be contrasted to the ambiguity that results
when only the condition K > 1 is known. With only this
information three possible mapping scenarios are implied
and only one is correct (Fig. 2). One of the scenarios cor-
responds to unconditional stability, while the other two
correspond to potential instability. An auxiliary condition
(2) is, therefore, required to determine which of these
three scenarios is the correct one. Accordingly, it can be
seen geometrically why g > 1 is equivalent to uncondi-
tional stability. Although K > 1, alone, is not equivalent
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to unconditional stability, it does imply the nonintersec-
tion of the USC boundary with mapping and stability cir-
cles. Furthermore, it specifies possible mapped regions
associated with each of the three scenarios.

V1. ExaMPLES

A table has been constructed to compare the value of
K, |A], By, and B, to the two new stability criteria, w, and
w'. The following nine sets of 2-port S-parameters have
been used to calculate the stability factors:

1. Unconditional Stability
S“ = .20 2 20° S21 =3 2 40°

Sy, = .05 2 120° 8§, = .5 2 —50°
2. Conditionally Unstable: K > 1 and B, < 0
Su=.75 « —60° Sy =6 2 90°
S, = .3 2 70° S = .5 2 60°

3. Conditionally Unstable: K < 1 and B, > 0
Su =105 220° 8§, =32 40°
Sp = .05 2 120° S, = .5 2 —50°
4. Unconditionally Stable: Unilateral Case

Sy =.1020° 8§, =02 0°

S, =020 S8, =03~2,0°
5. Input Unstable: Unilateral Case

Sy =12 2,0° S, =020°

Sp=020° §,=03+,0°

6. Output Unstable: Unilateral Case
5112.10400 S21=040°

S]ZZOLOO 522:1.3400

7. Unconditionally Stable: |A|* = |Sy,|* Straight Line
Stability Curve

Sp=.520 Sy =2 2 0°
S =025 2« 180° 8 = 0.1 2 0°
8. Conditionally Unstable: NEC710 at 2 GHz
Sy =095 2 —-22° S = 3.5 2 165°
S, = 0.04 2« 80° S = 0.61 £ —13°
9. Unconditionally Stable: NEC710 at 18 GHz
Sy =0.69 2 —123° S, = 1.29 2 78°
S; = 0.11 2 48° Sy =0.52 2 =77°

The stability factors for the nine sets of S-Parameters
listed above have been tabulated in the table below:
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TABLE I
STABILITY PARAMETER COMPARISON

S-Parameter

Set K A B, B, u o
1 2.5735 0.2491 0.7280 1.1480 1.5987 3.3004
2 1.3435 2.1562 -3.3367 ~3.9617 0.1485 0.3381
3 0.3358 0.6732 1.3993 —0.3057 —0.2862 '0.8683
4 o .03 9191 1.0791 3.333 10
5 P 0.36 2.2204 —0.4796 -3.333 0.8333
6 — 0.130 —0.6969 2.6631 0.7692 ~10.0
7 7.5 0.10 1.23 0.75 7.5 1.833
8 0.1880 0.5721 1.2032 0.1424 0.3307 0.8294
9 1.1203 0.2539 1.1412 0.7298 1.0484 1.0305

VI. CONCLUSIONS’

It has been shown that a single parameter, y, exists that .

is necessary and sufficient to show unconditional stability
of any 2-port network. A companion parameter, p’, also
exists and is necessary and sufficient to show uncondi-
tional stability of any 2-port as well. Although the con-
dition K > 1 implies that the mapping and stability circles
do not intersect the boundary of the USC, an ambiguity
involving three possible mapped regions, not all uncon-
ditionally stable, results, and thus requires an auxiliary
condition for resolution. No such ambiguity occurs with
the u (or p') approach. A comparison of the new stability
parameter (p or p') for S-parameter values that satisfy or
violate the traditional stability conditions (1) and (2) has
been illustrated.

ArpeENDIX |

It will be shown that if K > 1 and 1 — |§p|* >
|81 S15|, then 1 — [S,;|* > |8, S12|. Expanding A and
rearranging terms in (20) yields

1S3 121 = 1821 + Su(SHS%80) + STi(SHSH Sn)*
< 1= |Spl? = 288l + [SnSul”
Dividing by the positive quantity 1 — |S,,|* yields

(515531 50) (5183 5n)*
Sul? + 8y, 22210) g B 272190)
Sl S s ST
< 1S3 80 |* = 21851 Sia| + 1 = [Sn/?
1 — Syl

From (4), one notes that this is the equation for a disk in
the S;; plane and can be expressed as follows

SI2SZIS;<2 1 - ’SZZIZ - ‘SZI SIZI
1 — |85/ 1= |8yl

S” +

It is clear that S,; can only take on values that fall inside
this disk. Such value must obey the following inequality

|Su] < r+ ¢

where r is the radius of the disk in the §;; plane and ¢ is
the magnitude of the center of the disk in the S|, plane.

This results in

181281
| 2
$ul < 1+ Sy ¥ @)
Since 1 — [Sn|* > [821S2],
[S| < V1 = [S128]. (30)

Substituting for |S,,| in (29) with (30),

‘|512S21‘ + 1.
1+ V1 = |Si2 8]
Simplifying, one obtains

[Su] < V1 - {512521\_

1Sl <

and therefore
1= [Su]* > [S2 Sl

as was to be shown.

In order to show the converse one can repeat this proof
by substituting S,, for §;; and visa versa. The result is the
proof that if K > 1 and 1 — |S;;|* > |85 S5/, then 1 —
|82]% > |81 812]. If K > 1, then only one of the auxiliary
conditions (2) is needed for the unconditional stability.

AppENDIX 11

For an unconditionally stable circuit it would appear
that two different stability circle configurations are pos-
sible as illustrated in Fig. 1(b) and (c). That these two
distinct cases are really the same, provided the motivation
for recognizing that a single stability parameter p was
possible, as can be seen by examining the stereographic
representation of the complex plane as a sphere.

Stereographic projection [13] is accomplished by plac-
ing a sphere with- unity diameter on the complex plane.
As illustrated in Fig. 3(a), the south pole is located at the
origin and the north pole on the z axis, perpendicular to
the plane. Points on the sphere are identified with points
on the plane by projecting a line from the north pole
through the sphere to the plane. Therefore, a circle of unit
radius in the plane is equivalent to the equator of the
sphere. In general circles in the plane are transformed into
circles on the sphere, and straight lines in the plane be-
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(b)
Fig. 3. Stereographic projection.

(b)

Fig. 4. Stereographic projection of stability circles.

come circles on the sphere that pass through the north
pole. Therefore, from the point of view of the stereo-
graphic projection, circles and straight lines are equiva-
lent. Also, orthogonality is preserved.

Points inside the USC transform to points on the south-
ern hemisphere, while points outside transform to the
northern hemisphere as illustrated.in Fig. 3(b). The two
stability circle cases illustrated in Fig. 1(b) and (c¢) are
now represented using stereographic projection to get Fig.
4(a) and (b). In both cases the boundary between the un-
stable and stable region is defined by a circle in the north-
ern hemisphere. While the situations appear different in
the complex plane, they are recognized in the spherical
representation as the same. The only difference on the
sphere is that in one case the stability circle encloses the
north pole. Therefore, topologically it should be possible
to determine when the cases represented by Fig. 4(a) and
(b) occur using only one parameter. The parameter p (or

p') does this.
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